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Introduction 
The treatment of uncertainty is key to ensuring and 

maintaining an appropriate level of public safety while al- 
lowing the flexibility necessary to reduce costs. This is 
true for all fire safety engineering calculations whether 
conducted to meet a performance-based code, to aid in the 
establishment of a prescriptive requirement, or to com- 
pare a performance option to its prescriptive counterpart. 
However, at present, no method exists for the treatment of 
uncertainly in a fire safety engineering calculation. Proper 
treatment of uncertainty will assist engineers and archi- 
tects in the design process, and assist code officials by in- 
creasing confidence in the acceptance of a performance 
calculation. It will aid researchers in prioritizing enhance- 
ments to both the physics and structure of fire models, 
and aid policymakers by incorporating scientific knowl- 
edge and technical predictive abilities in policy decisions. 

This chapter is made up of several sections. The first 
section, Understanding Uncertainty, covers basic concepts 
of uncertainty and variability in order to develop a com- 
mon language for discussion among fire safety profession- 
als. It then presents motivating examples that show the 
importance of dealing with uncertainty in the application 
of our scientific tools. It is shown how variations in analy- 
sis parameters, assumptions, or model inputs can lead to 
changes in the acceptability of a fire safety design. This is 
termed switch0ver.l A taxonomy is presented in this section 
that is useful as a framework for understanding, identify- 
ing, and investigating uncertainties. 

Another section, Treatment of Uncertainty in Design 
Calculations, discusses the treatment of uncertainty with 
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safety factors as well as quantitative techniques for the 
treatment of uncertainty in fire protection design calcula- 
tions. The use of safety factors in both prescriptive and 
performance-based codes is discussed. Guidance is given 
on selecting an appropriate factor of safety and on com- 
bining safety factors. Quantitative techniques are pre- 
sented for the treatment of uncertainties in measurement; 
in analysis parameters, assumptions, and values; and in 
complex fire models. 

A methodology for the application of an uncertainty 
analysis to a fire safety engineering calculation is sug- 
gested. It is shown how results of this type of analysis are 
used to create distributions of time to untenability, to 
demonstrate the effect of selecting various sets of perfor- 
mance criteria, to compare two designs, and to provide 
insight to model development. 

The last section of this chapter, Treatment of Un- 
certainty in Cost-Benefit and Decision Analysis Models, 
discusses the application of uncertainty analysis to cost- 
benefit and decision analysis models. An example of a cost- 
benefit model that incorporates uncertainty is provided. 

Understanding Uncertainty 
Uncertainty is a broad and general term used to de- 

scribe a variety of concepts including but not limited to 
lack of knowledge, variability, randomness, indetermi- 
nacy, judgment, approximation, linguistic imprecision, 
error, and significance. These and many other facets of 
uncertainty are discussed in more detail in Chapter 4 of 
the book Uncertainty.1 The variety of types and sources 
of uncertainty, along with the absence of agreed-upon 
terminology, generates considerable confusion in the fire 
protection engineering world. Many facets of uncertainty 
can be understood through statistical and scientific con- 
cepts, some of which are presented below. However, un- 
certainties in the engineering design process, such as 
those surrounding the selection of performance criteria, 
are best understood by their ability to change the accept- 
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ability of a design. Finally, to fully understand uncer- 
tainty in fire safety engineering, one must be cognizant 
of the difficulties in conducting a complete uncertainty 
analysis. 

Nature and Sources of Uncertainty 

Uncertainty is often discussed as though it was syn- 
onymous with measurement uncertainty, that is, doubt 
about the validity of the result of a measurement. Mea- 
surement uncertainties are characterized from both a sta- 
tistical analysis of a series of observations (to determine 
the random error) and from systematic effects associated 
with corrections and reference standards (to determine the 
systematic error). The total error is defined as a combina- 
tion of random and systematic errors. Much work has been 
done to reach an international consensus on the evaluation 
and expression of measurement uncertainty. General rules 
for evaluating and expressing uncertainty in measurement 
are provided in a guide published by the American Na- 
tional Standards Institute and the National Conference of 
Standards Laboratories.2 An example of dealing with mea- 
surement uncertainty in fire protection engineering is 
found in a study of the uncertainty surrounding the use of 
thermocouples to measure temperature.3 

However, uncertainty also arises from a variety of 
other sources to which standard techniques for the evalu- 
ation and expression of uncertainty do not always apply. 
Uncertainty can arise from a lack of complete knowledge. 
What is the heat release rate or radiative fraction of a 
mixed-fuel package? We have not measured and cannot 
reliably predict the value of these quantities for all poten- 
tial fuel packages. Furthermore, the heat-release rate and 
radiative fraction vary with parameters such as geometry, 
source and strength of ignition, and ventilation condi- 
tions. Uncertainty may arise from randomness, such as 
where and how the fire will start. Uncertainty may arise 
from indeterminacy, defined as the inability to know what 
will happen in the future. For example, building occu- 
pancy and furnishings may differ 10 or 20 years after they 
were first constructed. Uncertainty may arise due to the 
unpredictability of human behavior. It is unknown what 
actions each occupant will take upon discovering a fire or 
hearing an alarm. Uncertainty can arise because of dis- 
agreement between information sources. Rates of genera- 
tion of products of combustion per gram of fuel burned 
vary from study to study and even from test to test in the 
same study using the same instruments. 

Uncertainty may arise from difficulties in defining 
the problem. For example, a goal may be established to 
provide an equivalent level of fire safety. However, equiv- 
alency may be defined as providing the same time avail- 
able for egress, providing the same level of property 
protection, providing the same level of fire safety for fire 
fighters entering the building, or all of the above. Uncer- 
tainty may also arise from linguistic imprecision. It is diffi- 
cult to determine exactly what is meant by “flame spread 
should be limited.” Uncertainty often refers to variability, 
for example, the ambient temperature and the total num- 
ber of deaths from fire. These quantities vary in time by 
season, month, and day. They also vary in space by region 
of the country and community size. Even if we had com- 

plete information, we may be uncertain because of sim- 
plifications and approximations introduced due to com- 
putational limitations. 

There are also important questions related to under- 
standing uncertainties in perceptions, attitudes, and val- 
ues toward risk. “In addition to being uncertain about 
what exists in the external world, we may be uncertain 
about individual preferences, uncertain about decisions 
relating to potential solutions, and even uncertain about 
the level and significance of our uncertainty.”l Uncer- 
tainties inherent in the performance-based analysis and 
design process are discussed in Introduction to Perfomance- 
Based Fire Safety.4 

Understanding the level and significance of our 
uncertainty is crucial to making good fire safety design 
decisions. It is therefore important that the fire protec- 
tion engineering community understands basic concepts 
of probability and statistics, and that the community 
agrees on terminology for use in discussing uncertainty. 

Terminology for Probability and Statistics 

The mathematical concept of probability is used to 
quantify uncertainty, Elements of probability allow us to 
quantify the strength of, or confidence in, our conclu- 
sions. There are two views of probability, the frequentist 
(or classical) and the subjectivist (or Bayesian). Each of 
these are useful in quantifying uncertainties in fire pro- 
tection engineering. Likewise, inferential statistics has 
produced an enormous number of analytical tools that al- 
low the engineer or scientist to better understand the sys- 
tems that generate data. Inferential statistics allows us to 
go beyond merely reporting data, and enables the draw- 
ing of conclusions about the scientific system. Concepts 
essential to the understanding of uncertainty such as dis- 
tribution, mean, standard deviation, errors, corrections, 
correlation, and independence are presented in Section 1 
of this handbook. A full treatment of probability concepts 
is presented in Section 1, Chapter 11, and concepts of sta- 
tistical analysis are presented in Section 1, Chapter 12. 

Probability/frequentist view: The probability of an 
event’s occurring in a particular scenario is defined as the 
frequency with which it occurred in a long sequence of 
similar trials. For example, the probability of a fire pump 
failure may be defined by failure data for that pump in 
many fires. 

Probability/Bayesian view: The probability of an event 
is the degree of belief that a person has that it will occur, 
given all relevant information currently known to that 
person. For example, the probability that a new fire detec- 
tor will save lives may be based on the judgment of an ex- 
pert in both fire detection and the nature of fire deaths 
(who may or may not have frequency data to support 
such a belief in the classical sense). 

Random error and statistical variation: No measure- 
ment of an empirical quantity such as the burning rate 
of jet fuel can be absolutely exact. Imperfections in the 
measuring instruments and observational technique will 
inevitably give rise to variations from one observation to 



5-42 Fire Risk Analysis 

the next. The resulting uncertainty depends on the size of 
the variations between observations and the number of 
observations taken. Classical, statistical techniques such 
as standard deviation, confidence intervals, and others 
can be used to quantify this uncertainty. 

Aleatory uncertainty: Aleatory uncertainty is due to 
random variations and chance outcomes and has also 
been referred to as randomness,5 as stochastic uncertainfy,6 
and as statistical uncertainty.7 In principle, aleatory uncer- 
tainty cannot be reduced but can be better characterized 
through exhaustive study. Stochastic uncertainty has 
been defined as “the totality of occurrences that can take 
place in the particular universe under consideration to- 
gether with a probabilistic characterization of the likeli- 
hood of these occurrences.”8 

Epistemic uncertainty: Epistemic uncertainty arises be- 
cause of lack of knowledge. It has also been referred to as 
imprecision> as knowledge uncertainty,6 as engzneering uncer- 
tainty,7 and as subjective uncertainty because expert judg- 
ment is often needed to represent the uncertainty when 
full knowledge is lacking. In principle, epistemic uncer- 
tainty can be reduced through gaining additional infor- 
mation or data. It has been stated that this type of 
uncertainty often arises due to the uncertainty on the part 
of the analyst as to how the appropriate values of the 
quantities should be assigned.8 

Scientific versus statistical significance: Statistically sig- 
nificant refers to a mathematical calculation that verifies 
that two quantities are likely to be the same or different. 
Scientifically significant refers to whether the difference is 
large enough to be important. 

Uncertainties in the Design Process 
and the Problem of Switchover 

Of practical significance is that direct measurement 
of the fire safety performance of a building or building 
system is not usually possible; therefore, we must rely on 
the technical predictive ability of scientific tools, such as 
existing fire models. The problem is that the numerous 
uncertainties in the application of these fire safety design 
tools often go unrecognized or ignored. Many of these 
uncertainties are inherent in the design process itself. 
Variations in analysis parameters, assumptions, or model 
inputs may cause output criteria to change. Switchover 
occurs when outcome criteria change enough so as to 
cause a change in the design decision (e.g., the accepta- 
bility of a final design). It is critical to know if different 
sets of reasonable inputs, scenarios, or parameters used in 
a fire safety engineering design have potential to cause 
switchover and lead to different acceptable designs. 

The Society of Fire Protection Engineers (SFPE) Engi- 
neering Guide to Performance-Based Fire Protection Analysis 
and Design of Buildings details several steps in the design 
process.9 These are shown in Figure 5-4.1, adapted from 
the SFPE engineering guide. The stated intent of the 
guide is to ”provide guidance that can be used by both 
design engineers and approving authorities as a means to 
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Figure 5-4.1. 
sign process.9 

Overview of the performance-based de- 

determine and document achievement of agreed upon levels of 
fire safefy for a particular project” (emphasis added). 

A review and analysis of the performance-based de- 
sign process for fire safety engineering outlined in the 
guide along with a review of several case studies of 
performance-based, fire safety engineering designs for 
actual buildings was conducted.10 This review uncovered 
seven major barriers to determining and documenting 
achievement of agreed-upon levels of fire safety for a par- 
ticular project. All seven barriers involve various types of 
uncertainty. Thus, there is a well-defined and strong role 
for uncertainty analysis in improving the ability to docu- 
ment achievement of agreed-upon levels of fire safety. 
The seven barriers identified are presented below along 
with a discussion of how they might lead to switchover of 
a design from acceptable to unacceptable. 
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1. Performance criteria are not established or no agree- 
ment exists: There is uncertainty in the selection of per- 
formance criteria. In fact, performance criteria have not 
been established or agreed upon by the fire safety com- 
munity, and current policy allows the stakeholders them- 
selves to select the criteria to be used for each design. 
Discussions occur around questions such as the follow- 
ing: Is the set of performance criteria sufficient? What do 
the numerical values actually represent? Should different 
criteria be used for different subpopulations, such as for 
people who are sick, elderly, or have disabilities? At one 
recent international conference, two engineers presented 
their performance-based case studies conducted for real 
clients on actual buildings. They had each followed the 
current design guidelines; however, they had selected 
very different performance criteria.11J2 Differences ex- 
isted on three levels: (1) the parameters included in the set 
of performance criteria, (2) numerical values selected as 
the critical or cut-off values for these parameters, and 
(3) the presence or absence of a time element for reaching 
the cut-off values. Since predictions of fire models are 
compared to selected performance/life safety criteria in 
order to determine if a design is acceptable, variations in 
criteria can cause the same design to pass or fail. 

2. The design fire selection process is unspecified: 
Design fires are descriptions of fire events (e.g., a grease 
fire on the stove, a smoldering cigarette fire on the sofa). 
Along with design fires, several fire scenarios, or descrip- 
tions of possible fires that could occur, are developed. For 
each design fire evaluated, the goal is to provide a fire 
safety design that would mitigate unwanted fires from 
developing. 

Since it is impossible to evaluate physically the per- 
formance of building systems in response to all design 
fires that might occur, one does not have confidence that 
design fires and the resulting fire scenarios chosen ade- 
quately represent the range of fires that might occur in the 
building. Usually a designer will try to select worst-case 
or reasonable worst-case scenarios.* However, it is not al- 
ways intuitive which scenarios present a worst-case situ- 
ation or how likely (or unlikely) a particular scenario is. It 
is debatable whether we should be designing for the one- 
in-a-million fire and how many design fires and fire sce- 
narios are sufficient. A methodology is needed that would 
incorporate the likelihood of a design fire and/or associ- 
ated design fire scenario. It is easy to see how the same 
design may be deemed acceptable if based on a limited 
number and type of design fires, or deemed unacceptable 
if based on an expanded set of scenarios or a different set 
of scenarios. 

3. Assumptions are made about human behaviors dur- 
ing fire: During several critical steps in the design 
process, assumptions are made about human behaviors 
during fire. For example, some egress models used by fire 
protection engineers to predict the time required for 

*The term worst-case scenario is used in this chapter to represent both 
worst-case and reasonable worst-case scenarios as understood in the 
fire protection design field. 

safely evacuating a building (or part of a building) make 
many assumptions about how humans behave. Two as- 
sumptions are stated in one internationally used egress 
model: (1) 100 percent of the occupants are readily mobile 
and (2) occupants begin leaving the building immediately 
upon hearing an alarm.13 Experience demonstrates that 
this is often not the case.14J5 

Other behavior assumptions may not be explicitly 
stated but can be inferred from an analysis of model out- 
puts. For example, results from a recently published 
study of a performance calculation using the egress 
model in FASTlite reveal that assumptions are made 
about human behavior during fires.13 A decrease in the 
number of exits by one-third increases the egress time by 
exactly one-third. This suggests an implied assump tion 
that an equal number of people egress through each avail- 
able exit. More typically, actual human behavior will be to 
exit following the path one normally uses to enter and 
exit the building. Existing egress calculations and models 
need to be evaluated so that unrecognized and/or un- 
stated uncertainties resulting from assumptions regard- 
ing human behavior can be identified. Once revealed, the 
implications of these assumptions need to be explored 
quantitatively. 

4. Predictive fire models have limitations that are not 
well documented or widely understood: Fire models 
and other calculation methodologies are often inappro- 
priately used to develop and evaluate trial designs for 
buildings and/or scenarios outside of the predictive ca- 
pabilities of the models. This occurs because limitations 
of fire models are not well documented or widely under- 
stood. For example, computer fire models don’t model 
fire directly and only predict fire effects based on user- 
selected input data. Because many existing fire model and 
calculation methodologies were originally developed as 
research tools, model conditions, defined as “fundamen- 
tal requirements for the model’s validity,”l6 are often un- 
known or unstated. Estimates provided by a model are 
technically credible only when model conditions have not 
been violated. 

5. Outputs of fire models are point values that do not 
directly incorporate uncertainty: Even when the model 
is used within its intended limitations, fire model outputs 
are point values that do not reflect inherent input uncer- 
tainties (e.g., fire growth rates, initial conditions). Without 
knowledge of the uncertainty surrounding a prediction, it 
is impossible to be certain of a design’s acceptability. 
One example is modeling the response of fire protection 
equipment such as sprinklers, heat detectors, and smoke 
detectors. Predictions of the time to activation of such 
devices would specify, for example, 121 s. However, the 
actual time to activation may be higher or lower depend- 
ing on uncertain inputs or also on any number of factors 
not modeled, such as individual detector characteristics 
and distance below the ceiling. 

6. The design process often requires engineers to work 
beyond their areas of expertise: Problems can also occur 
when fire protection engineers are required to work in do- 
mains outside their expertise. Conservative assumptions 
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made by well-intentioned engineers may not be as conser- 
vative as intended. For example, a design engineer intend- 
ing to be conservative may assume that tenability would 
be violated if, out of a set of criteria, any one particular cri- 
terion, such as temperature or carbon monoxide, exceeded 
its minimum value. However, toxicity experts might argue 
that temperature and gas interactions cause tenability to 
be violated even when every individual species is in ac- 
ceptable ranges. Likewise, a design engineer may assume 
that the time needed for a resident to react to an alarm be 
conservatively set equal to the travel time needed to go 
from one remote comer of the unit to the other most re- 
mote corner of the same unit. However, this may not be 
that conservative since even a fully ambulatory occupant 
may stop to gather belongings, rescue a pet, call a neigh- 
bor, and so forth. 

7. No standardized methods exist to incorporate relia- 
bility of systems: The last barrier identified is the un- 
certainty surrounding both the reliability of a given fire 
protection device, system, or characteristic and the lack 
of a standardized method to incorporate reliability into 
performance-based engineering calculations and deci- 
sions based upon these calculations. We may be uncertain 
about the reliability of a given fire suppression system. 
Sometimes a fire suppression system is proposed as an al- 
ternative to passive fire protection, such as compartmen- 
talization. However, these two alternatives have different 
reliabilities. There is uncertainty (e.g., no agreement) on 
how to account for these differences. 

These seven barriers to determining and document- 
ing achievement of agreed-upon levels of fire safety for a 
particular project must be addressed fully in order for all 
stakeholders to have a known level of confidence in the 
science-based predictions and the resulting final design. 
All seven barriers involve various types of uncertainty. 
Thus, there is a well-defined and important role for un- 
certainty analysis in fire safety engineering calculations. 
Although this clear role for uncertainty in improving the 
development and implementation of performance-based 
fire safety regulations exists, uncertainty analysis is 
clearly an uncomfortable topic for many of the stakehold- 
ers in the process. 

Difficulties with Uncertainty Analysis 

Discussion of the proper treatment of uncertainty in a 
fire safety engineering calculation is difficult for several 
reasons: 

Magnitude of the problem. It is widely assumed that a 
mixture of conservative assumptions and factors of 
safety can be used to explain away uncertainties. How- 
ever, the magnitude of the problem is not clearly un- 
derstood. Factors of safety that are applied at various 
stages of the analysis are not necessarily linearly re- 
lated to the critical output parameters, potentially re- 
sulting in a reduced (or nonexistent) factor of safety in 
the results. 
Uncertainties that go unrecognized or ignored. These types 
of uncertainties include those in variables hard-wired 
in scientific tools, those in tenability/performance crite- 

ria, those surrounding the selection of design fires, and 
those in human behaviors and values. 

3. Effect on the implementation of performance regulations. It 
is feared that identification and treatment of uncer- 
tainty would show that our current ability to predict 
the buildup of heat and toxic products of combustion 
is not accurate enough to judge the acceptability of a 
proposed design with a high enough confidence level. 
This would delay implementation of the entire perfor- 
mance process until predictions of critical outcome cri- 
teria can be more certain. 

4. Quantitative methodolofl. No quantitative methodology 
exists for treating uncertainty in performance-based 
designs. A methodology is needed that is both rigorous 
and user friendly. 

5. Impracticality. It is feared that the mathematical rigor 
needed to conduct such an analysis would render the 
process impractical. 

6. Paucity of data. To quantify uncertainty adequately, a 
large quantity of data would be needed to determine 
ranges of values for input parameters such as heats of 
combustion, rates of production of various gaseous 
species, and other important inputs. A large quantity 
of data would also be needed to validate predicted val- 
ues with empirical data from real bum scenarios. 

It should be pointed out that these are real and valid con- 
cerns due to the combination of poorly defined and un- 
structured problems, and the lack of a user-friendly 
methodology. Current common practice for conducting 
uncertainty analyses involves completing a series of 
single-variable sensitivity studies. Application of these 
techniques to a complete performance-based design con- 
taining hundreds of variables is impractical. The following 
sections focus on practical ways to identify and account 
for uncertainties in fire protection engineering design. 

Identifying Uncertainties in Fire 
Protection Engineering 

When considering uncertainty in a f i e  protection en- 
gineering calculation, fire protection engineers typically 
consider first the uncertainties associated with the calcula- 
tion inputs, usually empirically measured quantities such 
as heat-release rate. However, there are many other types 
of uncertainty integral to fire safety engineering design. 

In a complete uncertainty analysis, not all uncertain 
parameters are treated quantitatively, only parameters or 
combinations of parameters with the potential to cause 
switchover in the final decision on the acceptability of a 
design. Others are negligible and best-guess values of 
these parameters can be used in the calculations. Still oth- 
ers, such as societal values, become policy or regulatory 
issues, not engineering issues. The intelligent use of 
safety factors can often cover more than one type of un- 
certainty. Still, it is useful to first identify sources and 
types of uncertainty from a broad perspective. Without 
first adequately identifying the sources of uncertainty, we 
cannot understand how best to handle them. 

This section presents a taxonomy useful in develop- 
ing a framework for understanding, identifying, and in- 
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vestigating uncertainties as a function of the steps in a fire 
safety engineering calculation. The taxonomy builds 
upon earlier published work.*JO 

Scientific Uncertainties 

Scientific uncertainties are due both to lack of knowl- 
edge (e.g., in the underlying physics, chemistry, fluid 
mechanics, and/or heat transfer of the fire process) and 
to necessary approximations required for operational 
practicality of a model or calculation. Of the many types 
of uncertainty found in performance-based fire safety 
design calculations, scientific uncertainties are typically 
the most easily recognizable and quantifiable. The many 
types of scientific uncertainty can be roughly divided into 
five subcategories: (1) theory and model uncertainties, 
(2) data and input uncertainties, (3) calculation limita- 
tions, (4) level of detail of the model, and (5) representa- 
tiveness of the design fire scenarios. 

Theory and model uncertainties arise when physical 
processes are not modeled due to lack of knowledge of 
how to include them, processes are modeled based on 
empirically derived correlations, and/or simplifying as- 
sumptions are made. These types of uncertainties are pre- 
sent in most compartment fire models, where each of 
these factors lead to uncertainties in the results. Most 
compartment fire models are zone models, which make 
the simplifying assumption that each room can be di- 
vided into two volumes or layers, each of which is as- 
sumed to be internally uniform and that changes in 
energy or state are implemented immediately throughout 
the layers. Current zone models do not contain a combus- 
tion model to predict fire growth, forcing the model user 
to account for any interactions between the fire and the 
pyrolysis rate. Many compartment fire models also use an 
empirical correlation to determine the amount of mass 
moved between the layers. 

Data and input uncertainties arise from both lack of 
knowledge of specific input values and variations in in- 
put values as a function of many factors, such as time, 
temperature, or region of the country. For example, the 
rate of heat release of a three-cushion upholstered sofa 
may be uncertain due to lack of available data for sofas 
with the same dimensions, stuffing, and cover materials. 
It may also be uncertain because the test method by 
which the heat-release rate was measured could not spec- 
ify all combinations of ignition source and strength, and 
because there are inaccuracies inherent in the instrumen- 
tation used in the test. Other inputs such as concentra- 
tions of toxic gases produced vary with time as the fire 
develops and are uncertain. The species production rates 
used to predict concentrations are a function of the mate- 
rial or combination of materials actually burned. This is 
unknown a priori at the design stage. 

For most fire models and calculation procedures, 
very different answers can result depending on the calcu- 
lation limitations, control volume selected for modeling, 
the level of detail of the model, and the model-domain 
parameters specified. Model-domain parameters set the 
scope of the system being modeled and define the model’s 
level of detail and/or baseline properties. Though these 

parameters or quantities are often ignored during uncer- 
tainty analysis, they have the potential for considerable 
impact.1 This has been shown for fires in high bay spaces. 
Differences in the outcome criteria such as maximum 
temperature, and time to activation of fire detectors and 
sprinklers are found when a large space is modeled with 
a simple zone fire model versus a more detailed compu- 
tational fluid dynamics model.’’ Differences in the out- 
come criteria are also found when a large space, which is 
typically subdivided by draft curtains,* is modeled. If a 
control volume is drawn around a single draft-curtained 
area (as opposed to drawing the control volume around 
multiple draft-curtained areas or around the entire build- 
ing), higher temperatures and faster activation times of 
installed fire protection devices will be predicted. Also, 
significant to the uncertainty in the outcome parameters 
are the index variables of the model. Index variables are 
used to identify a location in the domain of a model or to 
make calculations specific to a population, geographic re- 
gion, and so forth. 

Uncertainty arises in both the number and type of de- 
sign fire scenarios that need to be modeled for a given 
design/building. There may be significant differences be- 
tween reality and the design fire scenarios that were used 
to judge the adequacy of the performance-based design. 
Variations in the ignition source, rate of growth, and/or 
the materials burned affect confidence in the results. It is 
unclear whether all statistically significant fire scenarios 
must be modeled or whether worst-case or reasonable 
worst-case scenarios are adequate. Furthermore, a worst- 
case scenario may be defined in terms of many different 
variables. A scenario may be worst-case because it is most 
likely to cause death, because it has potential for large 
property loss, or for other reasons. 

Uncertainties and Variability in Behavior 

Human behavioral uncertainties concern both the 
way in which people act in a fire and how these actions 
should be considered during steps in the design process 
(e.g., definition of project goals, selection of performance 
criteria, and development and evaluation of trial designs). 
Behavioral scientists tell us that human actions can range 
from somewhat predictable to unpredictable. Actions are 
more predictable when choices are limited, procedures are 
practiced, the situation is not novel, and little chaos is pre- 
sent. Unfortunately, during a typical fire, few if any of 
these conditions occur. Brannigan discusses what he calls 
intentional uncertainty in relationship to human behavior.16 
Brannigan states, ”human decision making does not fol- 
low the same kind of well understood rules that control 
the physical science variables used in models. Human de- 
cisions represent intentional uncertainty.” 

Human behavior in response to a fire alarm must be 
modeled in terms of time to respond to the alarm and 
type of response. Does the person immediately begin 
evacuating the building? Does he/she take the stairs or 

“A draft curtain is a barrier that extends a certain vertical distance 
down from the roof or ceiling. Draft curtains are installed to subdi- 
vide a large area with the intent of corralling the heat and smoke. 
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the elevator? What factors into that choice? Does the per- 
son try to fight the fire? Does the person stop to gather 
personal possessions or call a neighbor? Another area of 
human behavior relevant to performance-based calcula- 
tions is behavior during egress. Do people use the best 
exit or the most familiar one? How long do people take to 
start to exit? 

Human factors also affect the analysis needed for 
identifying goals and objectives and developing perfor- 
mance criteria. Fire safety goals typically include levels of 
protection for people, with performance criteria being a 
further refinement of these objectives. Performance crite- 
ria are numerical values to which the expected perfor- 
mance of trial designs can be compared. What range of 
occupant characteristics, such as age or disability, should 
be considered? How do human behaviors, for example, 
during egress, influence the numerical values chosen for 
performance criteria? 

When developing and evaluating trial designs, the 
efficacy of the proposed fire safety measures mitigating 
all likely fire scenarios should be determined. This in- 
volves varying human behavioral elements. For instance, 
two very different fire scenarios could develop from the 
same cooking-initiated design fire: (1) a grease fire from 
cooking sets off a smoke detector that alerts the occupant 
who reacts and properly extinguishes the fire while it is 
still small; or (2) the occupant forgets and leaves a pot 
simmering on a burner, takes a sleeping aid, and goes to 
bed. The overheated pot ignites and the fire spreads to 
one or more adjacent items. The First International Sym- 
posium on Human Behaviour in Fire was held in 1998. 
Proceedings from this conference provide information 
useful in addressing these issues.18 

Uncertainties and Variability in Risk Perceptions 
and Values 

There is both variability and uncertainty in the way 
people perceive and value risk. Capturing differences that 
people have in their perceptions of risk and values related 
to risk is a necessary step in the design process. Research 
has shown that although people typically view conse- 
quences from voluntary risks less severely than equal 
consequences resulting from an unknown and/or invol- 
untary risk, there is variability19 For example, while some 
people would agree that an increase in risk to fire fighters 
(people who accept risk as part of their job) is justifiable if 
a corresponding decrease in risk to the public could be 
achieved, others would not. Few studies have been con- 
ducted that clearly demonstrate how society values fire 
safety risks at the level needed to support performance- 
based trade-offs. Some work on incorporating risk con- 
cepts and identifying levels of acceptable risk is discussed 
in Section 5, Chapter 12 of this handbook, “Building Fire 
Risk Analysis.” It is important to identify where value 
judgments enter into a performance-based calculation 
and to make any assumptions explicit regarding values 
and the impact of different values on the final design. 

Another important factor is the concept of equ im 
lency. Equivalency can mean different things to different 
stakeholders. For example, one person may determine 

that noncombustible construction is equivalent to an in- 
stalled sprinkler system if they are both shown to provide 
time to fully egress the building. Another may argue that 
they are not equivalent-that the reliability of the sprin- 
kler system is less. Designs may be equivalent in terms of 
life safety, property protection, business interruption, in- 
juries, and/or prevention of structural collapse, but they 
are most likely not equivalent in all regards. It is, there- 
fore, important to make explicit the assumptions that 
equivalency depends on. 

Uncertainties Related to the Life-Cycle Use 
and Safety of Buildings 

Many factors change over the lifetime of a building. 
The uncertainties surrounding future use, occupancy, and 
other factors contribute to the difficulty in conducting a 
structured, performance-based design. Even daily fluctu- 
ations in these design parameters can affect the safety of a 
building. For example, a building or area of a building 
that is normally occupied 24 hours per day may become 
unoccupied (or occupied by very different people) for ex- 
tended periods of time due to extraneous factors (e.g., 
business closing, maintenance, renovation). The charac- 
teristics of the different occupants can lead to very differ- 
ent design considerations. Other changes that may affect 
the life-cycle safety of the building are fire service charac- 
teristics such as location, expected response time, and op- 
erating procedures and capabilities. 

Uncertainties Related to Providing for Equity 
and Incorporation of Societal Values 

Providing for equity and incorporating societal Val- 
ues involves determining what is important to the stake- 
holders and to what degree protection should be 
provided. A mechanism should be provided to ensure 
equal outcomes for subgroups. Since most projects have 
many stakeholders, such as building owner, design engi- 
neer, architect, code official, and the public (users of the 
building), it is difficult to assign worth to the usefulness 
or importance of something and apply it across all indi- 
vidual and societal issues. The key here is that decisions 
that change when a value, attitude, or risk perception 
varies must be made explicit in the design. Agreement on 
these key decisions by all stakeholders is critical to the 
success of a performance-based design. 

Relation to Steps in the Design Process 
Several types of uncertainty will be encountered at 

each step in a performance-based design process or dur- 
ing the process of setting a new prescriptive requirement. 
For example, when developing performance criteria, one 
will have to deal with scientific uncertainty, such as deter- 
mining what level of carbon monoxide will cause unac- 
ceptable consequences, and how to account scientifically 
for interactions between products of combustion. One will 
also have to deal with issues of equity and societal values. 
At present, performance criteria are not established nor 
agreed upon. Changes to the set of performance criteria 
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selected could cause the same design for the same build- 
ing to be deemed acceptable in one jurisdiction and 
deemed unacceptable in another jurisdiction. Uncertain- 
ties related to life-cycle use and safety of buildings also 
arise when selecting performance criteria. Over the life cy- 
cle of the building, many factors, such as use and occupant 
characteristics, change. 

Nature and Sources of Uncertainty 
In conclusion, uncertainty is a broad and general 

term used to describe a variety of concepts including, but 
not limited to, lack of knowledge, variability, random- 
ness, indeterminacy, judgment, approximation, linguistic 
imprecision, error, and significance. Many of these uncer- 
tainties are inherent in the design process itself. Variations 
in analysis parameters, assumptions, or model inputs, 
may cause output criteria to change. Switchover occurs 
when outcome criteria change enough so as to cause a 
change in the design decision (e.g., the acceptability of a 
final design). It is critical to know whether different sets 
of reasonable inputs, scenarios, or parameters used in a 
fire safety engineering design have potential to cause 
switchover and to lead to different acceptable designs. 
This section provided an overview of terminology used to 
describe uncertainty; described aspects of the design 
process that introduce uncertainty; and presented a tax- 
onomy useful as an aid in identifying uncertainties. 

Treatment of Uncertainty 

Treatment of Uncertainty with Safety Factors 

Safety factor and margin of safety are two commonly 
used terms in the field of engineering. The dictionary de- 
fines factor of safety in terms of stress: ”The ratio of the 
maximum stress that a structural part or other piece of 
material can withstand to the maximum stress estimated 
for it in the use for which it is designed.” Safety factors do 
not just apply to stress, however. The idea of a safety fac- 
tor is that the design values are multiplied by the factor of 
safety and the design is checked to ensure that the design 
is safe at the larger value (Le., the product of the design 
value and the safety factor). Safety margins are a slightly 
different concept. A safety margin is additive and not 
multiplicative. A safety margin is defined as the differ- 
ence between the design value and the value that would 
no longer be safe. 

Implied versus Explicit Safety Factors 

Safety factors are used with both prescriptive and 
performance codes. These factors of safety can be implied 
or explicit. Implied safety factors generally are found at 
various substages or components of a design. Implied 
safety factors provide for an extra margin of safety simply 
attributable to the choice of a component of a system. 
Implied safety factors may also take the form of conserv- 
ative assumptions or worst-case scenarios. Explicit safety 
factors are multipliers applied to critical analysis parame- 
ters, often (and preferably) the final outcome criteria used 

to judge the acceptability of a design. Both types of safety 
factors are used to increase safety by lowering the proba- 
bility that critical values of analysis parameters will be 
reached or exceeded. 

Use of Safety Factors in Prescriptive 
and Performance Codes 

An example of an implied safety factor in a prescrip- 
tive code is use of a pipe material or thickness that ex- 
ceeds the strength and durability needed to meet the 
requirements of a sprinkler system. Pipe schedules have 
implied safety factors. An example of an explicit safety 
factor incorporated into a prescriptive code provision is a 
requirement to use a sprinkler flow density 1.5 or some 
other multiple higher than the minimum shown experi- 
mentally to control a given type of fire. In this example, 
the safety factor is used to cover for uncertainties in the 
measurement of the needed flow density, variations in the 
actual fuel package versus the fuel package tested, and 
uncertainties and variations in geometry, building charac- 
teristics, and so forth. An example of an implied safety 
factor in a performance code is an assumption that the 
rate of production of carbon monoxide for a given fuel 
package is equal to the rate of production of the compo- 
nent fuel with the highest production. An example of an 
explicit factor of safety incorporated into a performance- 
based design is to directly multiply the time necessary for 
egress by a factor of 2. 

Selecting an Appropriate Factor of Safety 
The first step in the use of safety factors is to deter- 

mine which analysis parameters would be appropriate 
for the application of a safety factor. When a factor of 
safety is applied to measures of the final outcome criteria, 
it is most clear what margin of safety has actually been 
achieved; however, it is least clear how to alter the design 
specifications when a higher factor of safety is desired. 

Safety factors may also be applied to different analysis 
parameters at various stages of the analysis. Careful judg- 
ment must be used, however, when applying these inter- 
mediate safety factors, because the quantity to which they 
are applied may not be linearly related to the final outcome 
criteria. Even if the quantity is linearly related to the final 
outcome criteria, it may not possess a 1 : 1 relationship. 
Specifically, a 1 : 1 relationship exists when a unit change 
in the analysis parameter causes a proportional unit 
change in the outcome criteria. In fire protection engineer- 
ing calculations, input variables and analysis parameters 
are not often linearly related to outcome criteria such as 
upper-layer temperature. Also, they usually do not share 
common units of measure. In fire protection engineering 
calculations, time is the only common measure. It is likely 
that a safety factor of 2 applied to an intermediate quantity 
will not allow for a safety factor of 2 in the final design. In 
some cases, a safety factor of 2 applied to an intermediate 
quantity may not allow for any factor of safety design. 

This is particularly true for implied factors of safety 
often found in the form of conservative assumptions. For 
example, an assumption that a fast growth rate fire is a 
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worst-case scenario is not true in all cases. A fast-flaming 
fire may not pose the greatest danger if it activates the 
sprinkler more quickly. A slower developing fire may be 
more able to overpower the sprinkler in some circum- 
stances, and a fire originating in an unprotected or 
shielded space, even though slower growing, may also be 
more deadly. Therefore, if we wish to provide a safety fac- 
tor of 2 to the time available to safely egress a building, 
we cannot assume that doubling the fire size (heat release 
rate) will achieve this goal. Heat release rate is not linearly 
related to time to critical temperature. 

When an explicit factor of safety is applied, one may 
chose a value of 1.5, 2, or even higher. How much of a 
margin of safety is appropriate is as much a function of 
how much confidence we have in the predictive equa- 
tions (Le., are we using a factor of safety as a factor of 
uncertainty?) used in the calculations as it is of the stake- 
holders’ risk tolerance. It should be noted, however, that 
increasing the margin of safety usually corresponds to an 
increase in cost of the project. When historical perfor- 
mance data is available, it can be used to set factors of 
safety. Otherwise, safety factors are usually set by expert 
judgment or mandated in policy. Safety factors are set to 
reflect confidence in the design equations as well as to 
reflect the stakeholders’ acceptable risk tolerance. New 
specialized methods are being developed for deriving ap- 
propriate factors of safety. 

Combining Safety Factors 

First, it must be stated that there are no official rules, 
that is, none published and agreed upon by the fire safety 
community at large, for combining safety factors. The fol- 
lowing list of suggestions and potential pitfalls was com- 
piled by the author. After a fairly thorough review of the 
literature, specific numbers and justifications for safety 
factors were found lacking. To get good quantitative 
numbers for safety factors, historical data are needed. 

Track the effect of each factor of safety: The effect of 
each factor of safety on the outcome criteria can be deter- 
mined by changing the value of the safety factor and ob- 
serving the net change in the outcome criteria relative to 
the net change in the safety factor. When the equations are 
not overly complicated, it may be possible to derive this 
relationship directly using partial derivatives. For conser- 
vative assumptions, the effect of the assumption should 
be tested by repeat calculations. 

Watch for variance: If the normal variation in the popu- 
lation is sufficiently large, a factor of safety applied to the 
mean will not cover all or even most of the people who 
will be in the building. For example, if the baseline walk- 
ing speed is estimated as the walking speed of a young, 
healthy individual and a safety factor of 2 is used, that 
would not cover the walking speed of an elderly person 
or person with physical disabilities if their speed was less 
than half the average. 

Don’t assume safety factors are additive: Factors of 
safety applied to two individual parameters in the analy- 

sis will not necessarily provide a total factor of safety 
equal to the sum of each individual safety factor. The total 
safety factor could be more or less than the sum of the two 
individual safety factors. As was discussed earlier, analy- 
sis parameters are often not linearly related to outcome 
criteria. They are most likely in different units of measure, 
and analysis parameters are likely not linearly related to 
each other. For these reasons, safety factors cannot be as- 
sumed to be additive. 

Account for both positive and negative effects on safety: 
An explicit factor of safety or design assumption may 
have either a positive or negative contribution towards 
safety. Careful thought, engineering judgment, and test- 
ing using the calculation procedure must be used to test 
for the effects of each factor of safety and/or design as- 
sumption made. For example, doubling the heat of com- 
bustion may be conservative in predicting upper-layer 
temperature whereas doubling the radiative fraction will 
have the opposite effect. 

Evaluate for multiple performance criteria: Also, since 
most fire safety engineering designs are judged on mul- 
tiple performance criteria, what might constitute an 
implied factor of safety for one outcome criterion might 
constitute a reduction in safety for another parameter. For 
example, if a soot yield value is conservative for smoke 
detector activation, then it could not simultaneously be 
conservative for life safety.20 

Realize effects may change with time: The relative im- 
portance of individual input variables, and thus the fac- 
tors of safety applied to them, may be a function of time. 
In particular, variables may be limiting factors in the 
analysis during the time period of preflashover, and in 
the postflashover time period have little or no effect. Since 
in fire protection engineering we often deal with two dis- 
tinct phases of the fire represented by different physics 
and mathematics, we must be careful to be aware of 
changes in the effects of a parameter in these very differ- 
ent phases of fire development. 

Derivation of Safety Factors 

Researchers at the University of Lund21,22 have been 
conducting research on the application of the FOSM (first- 
order second-moment) methodology for fire safety engi- 
neering design. They have applied the FOSM method to 
derive safety factors for use in fire safety engineering de- 
sign calculations. The safety index is represented by p, the 
distance from the origin to a failure line (limit state). @ is 
also referred to as a reliability index where reliability is 
defined as the probabilistic measure of assurance of per- 
formance. p can also be thought of as the overall safety 
factor for the design. 

The overall concept for conducting a design is to 
specify input data, choose a target reliability index @ (they 
suggest 1.4, which is approximately equivalent to a prob- 
ability of failure of 8 percent on condition that a fire has 
started), and vary the design parameters to be deter- 
mined until the chosen value of @ has been obtained. In 
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this type of analysis, design parameters include design 
door width and time to detection.2’ 

They have also applied the FOSM methodology to 
derive the safety factor, @, for a design. In this case, design 
parameters such as door widths and time to detection are 
already known. An example is worked out for a shopping 
center.22 There are some admitted shortcomings to apply- 
ing this methodology to an actual design problem. First, 
the importance of the uncertainties in the input parame- 
ters needs to be investigated via a sensitivity analysis. A 
method of incorporating this uncertainty would then 
need to be standardized. 

Techniques for the Quantitative 
Treatment of Uncertainty 

It is important not only to recognize the various types 
of uncertainty, but also the different types of quantities 
for which the uncertainty exists, since they need to be 
treated in different ways. There is a standard procedure 
for quantifying uncertainty in empirical quantities. This 
procedure, sometimes referred to as classical uncertainty 
analysis, is based on the mathematics of probability and 
statistics. However, as shown by the taxonomy, in any fire 
safety engineering calculation or decision, there are many 
nonempirical parameters and assumptions used in the 
calculations. It is not always appropriate, meaningful, or 
even possible to treat the uncertainty in these nonempiri- 
cal parameters by these same probabilistic methods. It has 
been argued that ”probability is an appropriate way to ex- 
press some of these kinds of uncertainty but not others.”’ 
The next sections present quantitative methods appropri- 
ate for the expression of uncertainty in various types of 
quantities. 

Techniques for Quantifying 
Measurement Uncertainty 

Many calculation and model inputs are empirical in 
nature. To be empirical, variables must be measurable 
and have a true value. Empirical quantities in the domain 
of fire protection engineering include the heat-release 
rate, the burning rate, and the radiative fraction of a given 
fuel. Classical uncertainty analysis refers to a statistical 
method of determining the random and systematic errors 
(and from them the total error) for a set of measurements. 
Random error and statistical variation results because no 
measurement of an empirical quantity can be absolutely 
exact. Imperfections in the measuring instruments and 
observational technique will inevitably give rise to varia- 
tions from one observation to the next. The resulting un- 
certainty depends on the size of the variations between 
observations and the number of observations taken. 

Classical statistical techniques such as standard devi- 
ation, confidence intervals, and others can be used to 
quantify this uncertainty. These statistical techniques are 
presented in Section 1, Chapters 11 and 12 on probability 
and statistics, respectively. A full discussion on uncer- 
tainty in measurement is found in the U.S./ISO guide2 
and in the NIST guide.23 The NIST guide describes two 

types of evaluations of uncertainty. A Type A evaluation 
of standard uncertainty may be based on any valid statis- 
tical method for treating data. Three examples are (1) cal- 
culating the standard deviation of the mean of a series of 
independent observations; (2) using the method of least 
squares to fit a curve to data in order to estimate the para- 
meters of the curve and their standard deviations; and 
(3) carrying out an analysis of variance (ANOVA) in order 
to identify and quantify random effects in certain kinds of 
measurements. 

A Type B evaluation of standard uncertainty is usu- 
ally based on scientific judgment using all the relevant 
information available, which may include previous mea- 
surement data, experience, manufacturer’s specifications, 
and calibration reports. There is not always a simple cor- 
respondence between the classification of uncertainty 
components into categories A and B and the commonly 
used classification of uncertainty components as random 
and systematic. 

The nature of an uncertainty component is condi- 
tioned by the use made of the corresponding quantity, 
that is, on how that quantity appears in the mathematical 
model that describes the measurement process. When the 
corresponding quantity is used in a different way, a ran- 
dom component may become a systematic component 
and vice versa. The NIST guide also differentiates be- 
tween uncertainty and error. It is assumed that a correc- 
tion is applied to compensate for each recognized 
systematic effect that significantly influences the mea- 
surement result. The relevant uncertainty to associate 
with each recognized systematic effect is then the uncer- 
tainty of the applied correction. 

Techniques for Assessing Uncertainty in Analysis 
Parameters, Assumptions, and Value Parameters 

Probabilistic techniques used to quantify measure- 
ment uncertainties are not applicable to uncertainties in 
establishing performance criteria or uncertainties regard- 
ing values such as the value of life. These uncertainties 
should be evaluated with techniques that make explicit 
the effect of the uncertainty on the value of all decision 
variables. Decision variables in fire protection engineer- 
ing are such things as level of acceptable fire safety and 
installation of fire protection devices. If a quantity is a de- 
cision variable, then by definition it has no absolute, true 
value. It is up to the decision maker who exercises direct 
control to decide its value. Morgan and Henrion state 
that, “The question of whether a specific quantity is a decision 
variable, an empirical quantity, or some other type of quantity 
depends on the contexf and intent of the model, and particularly 
who the decision maker is” (emphasis added).’ For example, 
in performance-based design, the minimum, permissible 
escape time during a fire may be a decision variable for 
the regulatory body, but it may be an empirical quantity 
from the viewpoint of the fire protection engineer. 

Value parameters represent preferences of individu- 
als. One controversial value parameter is the value of pre- 
mature death avoided, often referred to as the value of life. 
Another is risk tolerance or risk preference, a parameter 
used to specify a degree of risk aversion when comparing 
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uncertain outcomes. The effect on the outcome of an 
analysis caused by differences in value parameters should 
be demonstrated explicitly. This is done by repeating the 
analysis for a range of possible inputs of the value para- 
meter(s) to determine if a change in the outcome occurs 
that someone would care about. Several techniques that 
aid in the evaluation of uncertainty in these types of quan- 
tities are presented below. For all these techniques, the 
effect of various values of analysis parameters, assump- 
tions, and value parameters is made explicit. 

Bounding: Evaluating the extremes of the range of pos- 
sible values of an uncertain quantity. If the extreme values 
at both ends are acceptable, a more complex and costly 
analytical uncertainty analysis may be avoided. For ex- 
ample, suppose we bound the ambient room temperature 
between a low and a high value. If we are trying to predict 
carbon monoxide buildup in a room, we may find that the 
results are either not sensitive to ambient temperature, or 
the range of predicted values of carbon monoxide, based 
on the range of ambient temperatures, is completely ac- 
ceptable. We may either eliminate ambient temperature 
as a variable or set it to our best-guess estimate. We do not 
need to quantify the uncertainty in the ambient tempera- 
ture any further. 

Sensitivitylsensitivity analysis: Sensitivity of a design 
to modest variability and uncertainty must be explicitly 
understood. Sensitivity analysis is useful in assessing the 
consequences of uncertainty in data and in assumptions. 
By testing the responsiveness of calculation results to 
variations in values assigned to different parameters, sen- 
sitivity analysis allows the identification of those parame- 
ters that are most important to the outcome criteria. It 
does not tell the decision maker the value that should be 
used, but it can show the impact of using different values. 

Parametric analysis: A parametric analysis is a particu- 
lar type of sensitivity analysis. In parametric analysis, de- 
tailed information is obtained about the effect of a 
particular input on the value of the outcome criterion. 
This is done by evaluating and plotting the outcome crite- 
rion for a sequence of different values for each input, 
holding the others constant. 

Importancelimportance analysis: An importance anal- 
ysis is a particular type of sensitivity analysis that deter- 
mines which of the uncertain input variables contributes 
most to the uncertainty in the outcome variable. The re- 
sults are used to focus on getting more precise estimates 
or building a more detailed model for the one or two, or 
small group of, most important inputs. Importance here is 
defined as the rank-order correlation between the output 
value and each uncertain input. Each variable’s impor- 
tance is calculated on a relative scale from 0 to 1. An im- 
portance value of 0 indicates that the uncertain input 
variable has no effect on the uncertainty in the output. 

Comparative analysis: Comparative analysis is a tech- 
nique used to evaluate risks, and the costs to mitigate 
them, by means of comparison to other similar risks. This 

technique is useful in evaluating perceptions of risk tol- 
erance. Researchers24 conducted a comparative analysis 
of the cost of mandating residential fire sprinklers with 
the cost of mandating other methods of reducing residen- 
tial deaths such as radon remediation and ground fault 
interrupters. 

Expert elicitation: Where hard data does not exist and 
is not possible to create experimentally, an expert elicita- 
tion is often conducted in order to obtain expert judgment 
of an uncertain quantity. An excellent discussion of the 
techniques for conducting an expert elicitation is pro- 
vided in Chapter 6 of Uncerfainty.l 

Switchover: Variations in analysis parameters, assump- 
tions, or model inputs, will cause output criteria to 
change. Switchover occurs when outcome criteria change 
enough so as to cause a change in the design decision 
(e.g., the acceptability of a final design). 

Techniques for Assessing Uncertainty 
and Sensitivity in Complex Models 

Several of the scientific uncertainties discussed in the 
taxonomy presented above can only be evaluated by ex- 
amining the structure of the fire model. These include the- 
ory and model uncertainties, calculation limitations, and 
level of detail of the model. Uncertainties arise when 
physical processes are modeled based on empirically de- 
rived correlations, and/or simplifying assumptions are 
made. Other physical processes are not modeled due to 
lack of knowledge of how to include them. As stated ear- 
lier, most compartment fire models are zone models, 
which make the simplifying assumption that each room 
can be divided into two volumes or layers, each of which 
is assumed to be internally uniform. Current fire models 
do not contain a combustion model to predict fire growth, 
and many compartment fire models use an empirical cor- 
relation to determine the amount of mass moving be- 
tween the layers.25 There are uncertainties introduced by 
these modeling approximations. 

Fire model validation: Fire model validation has be- 
come a much-discussed topic since fire models have be- 
come relied upon as a means of verifying that a fire safety 
engineering design meets a set of performance objectives. 
Work is being done to characterize the additional output 
uncertainty due to modeling approximations. Part of this 
work is focused on aiding the user in selecting a model, or 
set of models, appropriate to the type of prediction(s) 
needed. Some researchers have suggested a Bayesian 
framework where each available model is treated as a 
source of information that can be used in a prediction.26.27 

In addition, work is ongoing to evaluate computer fire 
models by comparison of model predictions to predictions 
of other models or with experimental data. These compar- 
isons are helpful to the user in determining the level of un- 
certainty likely from a model prediction for a similar set of 
conditions. However, these comparisons are difficult since 
they involve comparing two time-series curves, the exper- 
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imental measurements, and the predicted values. Histori- 
cally these comparisons have been largely qualitative. The 
use of a branch of mathematics called functional analysis 
to make comparisons of these time-series curves is being 
investigated. This allows lengths, angles, and distances 
between two arbitrary curves to be defined and quanti- 
fied.28 Further validation issues that must be addressed 
were discussed among various groups of fire safety pro- 
fessionals at the Conference on Fire Safety Design in the 
Twenty-First Century.29 Jones discusses issues that must 
be addressed in a report entitled, ”Progress Report on Fire 
Model Validation.”30 Once a model is selected, it is useful 
to know the sensitivity of that model’s output predictions 
to the values selected for the inputs. 

Sensitivity of output predictions to input values: When 
selecting and using a fire model, it is important to know 
the sensitivity of the predicted outcome criteria to the 
model inputs. In order to facilitate this, several quantita- 
tive methods for determining the sensitivity of model pre- 
dictions to model inputs are described below along with a 
brief discussion of their positive and negative attributes 
and limitations of application. These are also discussed in 
ASTM 1355-92, Standard Guide for Evaluating Predictive Ca- 
pability of Computer Fire M0dels.3~ 

A differential/direct method: For a system of time- 
dependent, ordinary differential equations, it is possible 
to solve directly for the partial derivitive of the predicted 
values with respect to each of the input variables. This set 
of partial derivatives measures the sensitivity of the solu- 
tion with respect to changes in the input parameters: 

where c k  are rate parameters. 
We simultaneously solve for both yr and a set of 

sensitivity functions, 6yyI/6ck, over all times t. These par- 
tial derivatives measure the sensitivity of the solution 
with respect to uncertainties in the parameters c k  and in 
initial conditions. Often these parameters are not accu- 
rately known. Dickson provides an example of a direct 
solution of a set of ordinary differential equations that 
composes a large computational model of atmospheric 
chemical kinetics.32 

Response surface replacement: Multiple runs, n, of the 
computer model are made. The model output and in- 
puts Xl i  ..., Xki, I = 1 ,..., n, are used to estimate the para- 
meters of a general linear model of the form: 

The estimated model is known as a fitted response sur- 
face, and this response surface is used as a replacement 
for the computer model. All inferences with respect to un- 
certainty analysis and sensitivity analysis for the com- 
puter model are then derived from this fitted mode1.33 
Construction of a response surface without specification 
of the probability distributions for all input variables is 
discussed by Iman.3 It is suggested, in fact, that when 

using certain sampling techniques to build a response 
surface, it may be desirable to ignore probability distribu- 
tions and use only the ranges of the variables. Iman 
provides a good discussion of using a response surface 
method to conduct a sensitivity analysis and provide a 
ranking of input variables in a second papec35 Beller has 
discussed the use of response surfaces for modeling 
upper-layer temperature and layer height.36 

Monte Carlo sampling: In uncertainty analysis employ- 
ing Monte Carlo sampling; it is desired to estimate the 
distribution function and the variance for the particular 
output variables under consideration. The uncertainty sur- 
rounding each input is represented mathematically and of- 
ten probabilistically by its individual diswibution. When 
all probability distributions for all uncertain quantities are 
put together, a simulation model is built that is believed to 
capture the relevant aspects of the uncertainty in the prob- 
lem. After running the simulation many times, an approx- 
imation of the probability distribution of the output 
variables is generated. The more simulations that are car- 
ried out, the more accurate the approximation becomes. 

Advantages and Disadvantages of Each Technique 

Iman and Helton state in their paper, ”Investigation of Un- 
certainty and Sensitivity Analysis Techniques for Com- 
puter Models,” some of the characteristics of large and 
complex computer models.33 

There are many input and output variables. 
The model is time consuming to run on the computer. 
Alterations to the model are difficult and time 
consuming. 
It is difficult to reduce the model to a single system of 
equations. 
Discontinuities exist in the behavior of the model. 
Correlations exist among the input variables, and the 
associated marginal probability distributions are often 
nonnormal. 
Model predictions are nonlinear, multivariate, time- 
dependent functions of the input variables. 
The relative importance of the individual input vari- 
ables is a function of time. 

Fire models often posses many and sometimes all of these 
characteristics. Iman and Helton evaluated the above three 
techniques as applied to large, complex models having 
many of the above characteristics. Their evaluation in- 
cluded ease of implementation, flexibility, estimate of the 
cumulative distribution function (CDF) of the output, and 
adaptability to different methods of sensitivity (analysis). 
Their findings clearly show that the technique that had 
the best overall performance was Monte Carlo sampling. 
They found that a differential analysis provides good local 
information about the inputs but does not extend well to 
a global interpretation. Also, a very real problem with 

*There are many sampling techniques. Monte Carlo is one, well- 
accepted sampling method that has certain statistical advantages but 
may not be the best choice in all cases. 



5-52 Fire Risk Analysis 

differential analysis lies in the difficulty of implementation. 
Response surface replacements were not recommended 
because the underlying models are often too complex to be 
adequately represented by a simple function. 

The following section describes a methodology for 
application of uncertainty analysis to fire safety engineer- 
ing calculations. This methodology employs Monte Carlo 
sampling. It also incorporates many of the techniques de- 
scribed in previous sections for quantifying measurement 
uncertainty, and assessing uncertainty in analysis para- 
meters, assumptions, and value parameters. 

Application of Uncertainty Analysis 
to Fire Safety Engineering Calculations 

The fire safety community needs to begin to move for- 
ward from discussing a set of issues and concerns relating 
to uncertainty in fire protection engineering to agreeing as 
a community on practical steps to execute an uncertainty 
analysis. This section demonstrates a suggested methodol- 
ogy that quantitatively treats variability and uncertainty 
and applies it to a complex fire protection engineering 
problem. The methodology suggested is a generic method- 
ology that is applicable to a wide range of fire protection 
engineering calculations and fire safety design issues. For 
example, application of the methodology is appropriate for 
engineering calculations such as those that predict upper- 
layer temperatures and concentrations of products of 
combustion. The methodology may also be applied to 
calculations of time needed to egress. It ties together the 
issues discussed above regarding uncertainties in the de- 
sign process and the problem of switchover. Here, a brief 
introduction to and overview of the methodology is 
presented. A full description of the methodology and a 
worked case study of an actual building can be found in 
N~ta r i ann i .~~  

Overview of the Performance-Based 
Design Process with Uncertainty 

The methodology is rigorous but comprehensible. It 
breaks up the process of conducting an engineering design 
calculation with uncertainty analysis into identifiable 
steps, each of which can be expanded or contracted to fit 
specific design problems. Table 5-4.1 shows the steps in 
conducting a performance-based fire protection engineer- 
ing design. The column labeled Performance-Based Design 
Process lists the steps in the performance-based design 
process as detailed in the SFPE guide.11 The right column 
lists the steps in the performance-based process with un- 
certainty. Steps or parts of steps in bold signify suggested 
modifications to the current design process. Steps 1-3 are 
modified by incorporating treatment of uncertainties noted 
in parentheses and detailed in the taxonomy presented ear- 
lier. The intent of each step does not change; however, the 
process is made explicit and standardized. 

The quantitative methodology for the application of 
uncertainty analysis is applied throughout Steps 4-8. In 
Step 4 a probabilistic statement of performance is devel- 
oped. In Steps 5-7, candidate designs are developed and 
a process for evaluating these designs through simulation 

with uncertainty analysis is described. Step 8 now in- 
cludes a decision of acceptability that makes use of the re- 
sults of the quantitative uncertainty analysis. Steps 9 and 
10 remain the same. It shouId be noted that performance- 
based designs may require an iterative process. If in Step 
8 the candidate designs are deemed unacceptable, the 
process returns to Step 6 to develop new candidate de- 
signs. If no acceptable design is found to meet the goals 
and objectives, Steps 1-3 must be revisited. 

Steps 1-3: Define Scope, Goals, and Objectives 
Many of the types of uncertainties discussed in the 

taxonomy are important to consider during the process of 
setting the scope, goals, and objectives of a project. These 
three steps are described below; for each step, one exam- 
ple of a type of uncertainty to consider is provided. 

The first step in the performance-based design pro- 
cess is to define the scope of the project. The project scope 
is an identification of the boundaries of the performance- 
based analysis or design. The SFPE guide suggests con- 
sideration of several aspects of scope such as occupant 
and building characteristics and intended use of the 
building. In the first section of this chapter, indeterminacy 
was discussed as well as uncertainties related to the life- 
cycle use and safety of buildings. Indeterminacy affects 
the scope in that it is impossible to know what the occu- 
pancy and furnishings will be in a building at some point 
in the future. Therefore when assumptions are made re- 
garding occupant and building characteristics, some in- 
vestigation of the sensitivity of the final design to changes 
in occupant and building characteristics should be made 
and documented. If switchover occurs for a particular 
value of one or a combination of analysis parameters, as- 
sumptions, or values, this needs to be made explicit. 

The second step in the design process is identifying 
and documenting fire safety goals of various stakehold- 
ers. These include levels of protection for people and 
property and provide for continuity of operations, histor- 
ical preservation, and environmental protection. For ex- 
ample, when identifying goals of various stakeholders, a 
mechanism needs to be provided to ensure equal out- 
comes for subgroups, including the building owner, de- 
sign engineer, architect, code official, and the public (end 
users). Because it is difficult to assign worth in the useful- 
ness or importance of something and apply it across all in- 
dividual and societal issues, the key here is that decisions 
that change when a value, attitude, or risk perception 
varies must be made explicit in the design documentation. 

The third step in the design process is the develop- 
ment of objectives, which are essentially the design goals 
that have been further refined into values quantifiable in 
engineering terms. Objectives might include mitigating 
the consequences of a fire expressed in terms of dollar val- 
ues; loss of life; or maximum, allowable conditions such 
as the extent of fire spread, temperature, or spread of 
combustion products. Uncertainties arise here in risk per- 
ceptions and values. There is both uncertainty and vari- 
ability in the way people perceive and value risk. 

Capturing differences people have in their percep- 
tions and values related to risk is a necessary step in the 
design process. For example, it may be a goal of the stake- 
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Table 5-4.1 Steps in the Performance-Based Design Process with and without Uncertainty 

Performance-Based Design Process" Performance-Based Design Process with Uncertainty'37 

Step 1 Define project scope Define project scope (uncertainties related to life-cycle use and safety of 
buildinas) 

~~ 

Step 2 Identify goals Identify goals (uncertainties related to equity and incorporation of societal 
values) 

Define stakeholder and design objectives (uncertainties related to risk Step 3 Define stakeholder and design 
objectives perception and values) 

~ ~ _ _ _  

Step 4 Develop performance criteria Develop probabilistic statement of performance (criteria, threshold, probability, 
time) 

Develop a distribution of design fire scenarios Step 5 Develop design fire scenarios 

(a) Select calculation procedure($) 

(b) Identify uncertain input parameters 

(c) 

(d) 

(e) 

Generate a distribution of design fire curves 

Define distributions of and model correlations among other input parameters 

Select sampling method and determine number of scenarios 

Step 6 Develop candidate designs Develop candidate designs 

Step 7 Evaluate candidate designs Evaluate candidate designs 

(a) Calculate a set of values for each outcome criteria and create cumulative 
distribution functions 

Determine sensitivity to elements of probabilistic statement of performance (b) 

(c) Evaluate base case (optional) 

(d) Determine effect of each candidate design on each of the scenarios 
~~ 

(e) Evaluate uncertainty importance 

Step 8 

Step 9 Select final design Select final design 

Step 10 Prepare design documentation Prepare design documentation 

Design meets performance criteria? Design meets all four elements of probabilistic statement of performance? 

holders to protect historical features of the building or to 
protect against business interruption or loss of operating 
capability. Stakeholders with different values may see 
these needs differently. It is important to identify where 
value judgments enter into a performance-based calcula- 
tion and to make any assumptions explicit regarding val- 
ues and the impact of different values on the final design. 

The following discussion is focused on incorporating 
uncertainty directly into Steps 4-8. Here, we develop a 
probabilistic design statement, develop a distribution of 
statistically significant fire scenarios, calculate a set of 
values for critical outcome criteria, and evaluate each 
candidate design to determine whether the design meets 
the performance criteria within acceptable uncertainty 
bounds. 

Step 4: Develop Probabilistic Statement 
of Performance 

The fourth step in the design process is the develop- 
ment of probabilistic statement(s) of performance, that is, 
criteria by which to judge the acceptability of the design. 
These criteria are a further refinement of the design objec- 
tives and contain numerical values to which the expected 
performance of the candidate designs can be compared. 
Each probabilistic design statement contains a minimum 
of four elements: probability, time, performance criteria, 
and threshold value. For example, an objective may be 
to maintain tenable gas concentrations in the corridor. 
A corresponding probabilistic design statement for life 
safety might specify that the design must allow for a 0.9 
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probability of having 4 min or more before a temperature 
of 65°C is reached in the corridor. Thus all four elements 
are included: probability, time, performance criteria, and 
threshold value. A location is also specified. 

There are many issues to be addressed when establish- 
ing probabilistic statements of performance. For example, 
which criterion should one evaluate? One could select, in- 
stead of or in addition to temperature, levels of carbon 
monoxide, heat flux, or obscuration. There is disagreement 
in the literature as to what values of each of these cause 
negative consequences. The negative consequences must 
be defined; that is, should the threshold values represent 
incapacitation or lethality? Also, the probability element 
involves determining the level of acceptable risk to the 
stakeholders, and establishing criteria for time to unten- 
ability involves understanding behavioral patterns of peo- 
ple in fire as well as making value judgments as to which 
subpopulations one is trying to protect. The sensitivity of 
the design to each element of the probabilistic statement of 
performance is evaluated in Step 7b. 

Based on this type of sensitivity analysis, a two-tiered 
probablistic statement of performance may be developed 
based on any of the four elements as well as location. For 
example, the probabilistic statement of performance may 
say that the design must allow for a 0.9 probability of hav- 
ing 4 min or more before untenability based on a temper- 
ature of 65°C is reached and a 0.9 probability of having 6 
min or more before 100°C is reached. The design state- 
ment may be specified in other ways: 

Include two probability levels, such as the design must 
have greater than or equal to a 0.95 probability of X and 
less than or equal to a 0.1 or more probability of Y. 
Provide a variation such as the design must provide 
for a 0.9 probability of providing 4 min before 65°C is 
reached and a 0.9 probability of having 8 min or more 
before untenable gas conditions are reached. 

These are just a few of the possible specification op- 
tions. Also, the location of evaluation matters. Untenabil- 
ity can be evaluated as a minimum anywhere in any 
room, including the room of origin, or it can be evaluated 
along the egress path. These two analyses may give dif- 
ferent results in terms of acceptability. 

Step 5: Develop a Distribution of Design 
Fire Scenarios 

One of the most important pieces of the methodology 
is how to generate a set of realistic input scenarios. It is 
important that this set include a combination of scenar- 
ios that represent statistically both the types of fires and 
the frequency at which they occur in a given occupancy. 
The input scenario generator should integrate informa- 
tion about the uncertainty, variability, and correlational 
structure of the input parameters. Using an appropriate 
sampling method (e.g., Monte Carlo method), a set of 
any given number of fire scenarios may be constructed. 
This distribution of scenarios generated will contain the 
typical cases as well as the worst-case scenarios in the 
tails of the distribution. The steps involved in developing 
a distribution of design fire scenarios are (a) selecting a 

calculation procedure; (b) identifying the uncertain and 
crucial input parameters; (c) generating a distribution of 
design fire curves; (d) defining distributions of and mod- 
eling correlations among input parameters; and (e) select- 
ing a sampling method and determining the number of 
scenarios. 

Step 5a: Select Calculation Procedure(s1 

There are a range of calculation tools and models cur- 
rently available from which to select the calculation pro- 
cedure(s) to be used in the performance-based design. 
The Fire Protection Handbook provides a good overview of 
the various types of fire models.38 Which model or type of 
model is selected depends on several factors, including 
the application of interest. Fire models can be used to pre- 
dict a hazard, predict a risk, reconstruct a fire, interpolate 
between or extrapolate beyond test results, or evaluate a 
parametric variation. The application of fire models for 
each of these purposes is discussed by Nelson.39 Each of 
these applications may have purpose at some stage of the 
performance-based design process. 

Step 5b: Identify Uncertain and Crucial 
Input Parameters 

Once a calculation procedure is chosen and candidate 
designs have been selected, the input parameters neces- 
sary for the calculation are evaluated. Which input param- 
eters will be treated as uncertain must be determined. 
Ideally, only parameters or combinations of parameters 
with uncertainty great enough to change decisions regard- 
ing the final design are treated as uncertain. These are re- 
ferred to as the crucial variables. Unfortunately, we do not 
always know a priori which of the input parameters pos- 
sess crucial uncertainty. Therefore, we must use a combi- 
nation of judgment and results of previous analyses. The 
uncertainty importance of each of the uncertain input pa- 
rameters is determined so that future analyses may be 
simplified. Eventually, only a few key parameters may be 
needed to capture the uncertainty in each calculation. 

Step 5c: Generate a Distribution of Design Fires 
Design fire scenarios are made up of both possible 

fire events (heat-release rate curves) and characteristics of 
the material burning, of the building, and other relevant 
information such as weather conditions. A set of design 
fires is established to mimic the type and frequency of 
fires expected for that occupancy. These design fire curves 
are based on statistically collected data, judgments, and 
the goals of the design. Each design fire is assigned a like- 
lihood of occurrence. 

Step 5d: Define Distributions of and Correlations 
among Other Inputs 

The uncertainty and variability surrounding each 
variable must be captured in the mathematical descrip- 
tion of that variable. Any and all available knowledge 
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regarding the value of that parameter should be incor- 
porated into the input scenario generator. This includes 
empirically measured values, known variations, and sta- 
tistically compiled data. For example, for a given occu- 
pancy type, the NFPA publishes statistical data on the 
percentage of fires that start in each potential room of fire 
origin. This information should be incorporated into the 
random scenario generator so that the generator mimics 
these statistics. Distributions can be constructed for vari- 
ables such as temperature, wind, and relative humidity 
from regional data published by the national weather ser- 
vice data. Methods for quantifying measurement uncer- 
tainty* are used to capture uncertainty and variability in 
empirically measured parameters such as rates of pro- 
duction of products of combustion. In many cases, where 
hard data do not exist and are not possible to create, ex- 
pert elicitation is needed to quantify the uncertainty. 

When two or more variables are correlated, knowl- 
edge of the value of one variable tells one something 
about the value of the other variable(s). Correlation 
among variables is modeled so that the input scenario 
generator will not generate unrealistic scenarios. For ex- 
ample, if the design incorporated a weather module, a 
month of the year would be randomly selected. For that 
given month, a value is sampled from an outdoor temper- 
ature distribution based on National Weather Service data 
for that region. Outdoor temperature is correlated to ex- 
ternal pressure, wind, relative humidity, likelihood of 
windows/doors being open, indoor temperature and 
pressure, and initial fuel temperature. This prevents the 
software from generating, for example, a scenario where 
there is a fire on a below-freezing day in August, in Cali- 
fornia, and all the windows are open. 

Step 5e: Select Sampling Method and Determine 
Number of Scenarios 

A sampling method, such as Monte Carlo, Latin Hy- 
percube, or quasi-random must be selected. By sampling 
a single value from each of the distributions in the input 
scenario generator and combining those numbers with 
the values of input parameters that are being treated as 
certain, any number of independent fire scenarios may be 
generated. 

A large number of scenarios increases the statistical 
significance of the results. However, this relationship is 
dependent on the sampling method chosen and is not lin- 
ear. Using 2000 runs may not provide any more insight 
than using 500. The number of scenarios chosen depends 
on (1) the number of uncertain input parameters, (2)  the 
average calculation time per scenario for the calculation 
procedure chosen, and (3) the statistical significance 
needed. When conducting correlational analyses between 
inputs and outputs, one obtains importance or correlation 
coefficients, c, between 0 and 1. Hald provides a formula 
for determining the relationship between the number of 
runs, n, and the statistical significance (as measured by a 
t-test) of the correlation coefficient.40 

The value for f is related to the confidence level, which is 
typically chosen as 95 percent. 

Step 6: Develop Candidate Designs 
The candidate design is intended to meet the project 

requirements. A candidate design includes proposed fire 
protection systems, construction features, and operations 
that are provided in order to meet the performance crite- 
ria when evaluated using the design fire scenarios. 

Step 7: Evaluating Candidate Designs- 
Introduction 

Each candidate design must be evaluated using each 
design fire scenario. The evaluations indicate whether the 
candidate design will meet the elements of the prob- 
abilistic statements of performance. Only candidate 
designs that meet the performance criteria may be con- 
sidered as final design proposals. Without the quanti- 
tative treatment of uncertainties in the design, each 
calculation will provide a point estimate only of the im- 
portant outcome criteria. For example the performance 
criteria for a design may be a 100°C maximum tempera- 
ture reached in the upper layer. The time to an upper- 
layer temperature of 100°C may be predicted as 175 s, and 
the time to activation of a sprinkler may be predicted as 
171.2 s by a given computer model. Because the sprinkler 
is predicted to activate before the performance criteria is 
exceeded, this would be deemed an acceptable design. 
However, the uncertainty in the prediction of time to 
100°C may be 520 s. This would mean that the tempera- 
ture in the room may reach 100°C at 155 s or before acti- 
vation of the sprinkler. Also, the predicted time to 
activation of the sprinkler has an uncertainty surround- 
ing it as does the temperature at which untenability might 
actually occur. 

The performance-based design process with uncer- 
tainty will aid in the calculation of a range of possible val- 
ues for each key outcome criterion instead of a single 
point value. This methodology is useful for and may need 
to be applied to several parts of the design calculations. 
For example, it could be applied to the calculation of 
upper-layer temperatures, to the prediction of time to re- 
sponse of devices, and to the prediction of time needed to 
egress a building. 

Step 7a: Calculate a Set of Values for Each 
Outcome Criterion 

A single value will be determined for each outcome 
criterion calculated for each design fire scenario run. 
Much information can be obtained from observation of 
both the range of values for criteria of interest and from 
cumulative distribution functions generated from the set 
of all values. 

If criteria are time-series values, each scenario will 
predict a different curve of the key outcome criteria ver- 
sus time. For example, if upper-layer temperature is the 
criterion of interest, four design fire scenarios would pro- 
duce four curves of upper-layer temperature versus time. 
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Figure 5-4.2 shows a representative graph of the value of 
outcome criterion A plotted against time from ignition (in 
seconds). For any given design, there will be as many 
curves as there are design fire scenarios calculated. One 
can see that the curves vary both in the magnitude of the 
peak value and in the time to the peak value. 

The range of values predicted from the set of design 
fire scenarios represents the uncertainty in the value of 
the outcome criterion. From the set of predicted values of 
a single outcome criterion, a cumulative distribution 
function may be generated. This is done by graphing the 
value of the criterion against its rank order. For example, 
for n design fire scenarios, n values of a given criterion are 
generated. These values are then sorted in descending or- 
der. The largest value is graphed versus l/n, the second 
largest against 2/n,. . ., and the smallest value against n /n  
or 1. 

An example of a cumulative distribution function 
(CDF) is shown in Figure 5-4.3. The time to reach a thresh- 
old value of 1 or more of the tenability criteria, that is, a 
value determined to cause injury or death, can be deter- 
mined from the time-series predictions. The threshold 
value may be a particular temperature or carbon monox- 
ide level or a parameter used to represent some synergis- 
tic effect of a combination of the tenability variables. One 
value of time to untenability is obtained for each scenario 
run. The set of all possible values provides a distribution 
of the outcome criteria. 

Figure 5-4.3 shows that for the distribution of design 
fire scenarios, there is almost a 1.0 probability that the 
time to a critical value of criterion A is 30 s or more. Like- 
wise, there is a 0.75 probability that the time to this value 

is 120 s or more, a 0.50 probability that it is 180 s or more, 
and a 0.1 probability that it is 390 s or more. 

Step 7b: Determine Sensitivity of Outcome 
Criteria to Elements of Probabilistic Statement 
of Performance 

The sensitivity of key outcome criteria to each of the 
four elements of the probabilistic statement of perfor- 
mance upon which a design is judged must be known 
before good policy and good design practice can be estab- 
lished. Elements such as criteria, threshold values, proba- 
bilities, and times are not mandated nor agreed upon by 
fire safety and health professionals, nor the public. There- 
fore, major conclusions of all designs should be checked 
in order to demonstrate the sensitivity to uncertainty in 
each of these elements. This might include checking for 
times to untenable temperature, carbon monoxide, car- 
bon dioxide, and reduction in oxygen. It may include 
checking for synergistic effects of the presence of these 
substances. It may also be appropriate to evaluate for heat 
flux and visibility. 

The same design may be judged on two different per- 
formance criteria or by two different critical values of the 
same performance criterion. Figure 5-4.4 shows an exam- 
ple of time to untenability based on different values of 
upper-layer temperature. This type of presentation could 
also be used to determine the effect on time to untenabil- 
ity by selecting a group of tenability criteria or by includ- 
ing different sets of components in the specification of 
tenability criteria. 
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Figure 5-4.2. Variation in prediction of time-series values of outcome criterion A. 
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are reached for three different values of untenable temperature. 

Probability of having X seconds or more before untenable upper-layer temperatures 

This type of evaluation is a good way to focus discus- 
sions among stakeholders on deciding which tenability 
criteria should be included, what effect the selection of 
different threshold values of tenability criteria has, what 

probability level is acceptable to the stakeholders, and 
how to select the final design. At the end of this step, final 
performance criteria must be selected for use in judging 
acceptability of designs and choosing a final design. 
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Step 7c: Evaluate Base Case 

Depending upon the needs and the scope of the proj- 
ect, it is helpful to compare a candidate design to a base- 
case design. The base case can be the design that meets 
the prescriptive code, the design that includes the fire 
protection options currently in the building, or the design 
with no active fire suppression systems. The purpose of 
having a base case is to benchmark the effects of fire on 
the building and on the building conditions against each 
of the designs. 

In Figure 5-4.5, the results of multiple scenario runs 
are used to show the probability of safe egress graphed 
against the time to untenable conditions for two different 
designs. Design 1 and Design 2 may represent two differ- 
ent performance designs or a performance design and a 
prescriptive design. Reiss discusses the need for this com- 
parative approach.41 The graph shows two design curves 
that exhibit crossover. Design 1 provides a higher proba- 
bility of tenability out to 50 s; however, Design 2 provides 
a higher probability of tenability at longer times. 

Another way that the acceptability of a design is 
judged is by comparison of the level of safety provided to 
that provided by the corresponding prescriptive design. 
There is uncertainty associated with the prescriptive 
design also. The prescriptive code will mandate certain 
building materials and fire detection and suppression 
schemes. However, uncertainty and variability remain in 
the weather, ventilation conditions, human behavioral as- 
pects, and where and how the fire will start. Thus, multi- 
ple scenarios can be constructed in a parallel manner to 
that shown above, holding as constants those factors re- 
quired by the prescriptive code. Thus, a CDF for the pre- 
scriptive code can be generated and compared to the CDF 
for the performance code. 

Step 7d: Determine the Effect of Each Candidate 
Design on Each of the Scenarios 

To compare two different candidate designs, we may 
want to look at the distribution of differences between the 
two designs based on the final selected performance crite- 
ria. One may consider differences between a design and 
the reference base case or differences in time to untenabil- 
ity provided by Design 1 versus Design 2. For example, 
Figure 5-4.6 is a cumulative distribution function of the 
difference in time to untenability provided by Design 1 
minus the time to untenability provided by Design 2. 

Figure 5-4.6 shows that there is a 0.25 probability that 
Design 1 will provide a longer time to untenable con- 
ditions than will Design 2. Conversely, there is a 0.75 
probability that Design 2 will provide a longer time to 
untenability than will Design 1 and a 0.25 probability that 
the difference will be 100 s or more better. In selecting a fi- 
nal design, it may be helpful to investigate what factors 
might lead to Design 1 providing more time to untenabil- 
ity than Design 2, which could highlight ways to improve 
the design. 

Step 7e: Evaluate Uncertainty Importance 

An importance analysis is a particular type of sensi- 
tivity analysis that determines which of the uncertain in- 
put variables contributes most to the uncertainty in the 
outcome variable. The results are used to simplify future 
performance-based designs by identifying the one or two, 
or small group of, most important inputs. Importance 
here is measured by the correlation between the output 
value and each uncertain input. Each variable’s impor- 
tance is calculated on a scale from 0 to 1 (or -1). A correla- 
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Figure 5-4.6. Cumulative distribution function of time to untenability of Design 7 - Design 2. 

tion of 0 indicates that uncertainty in the input variable 
has no effect on the uncertainty in the output parameter. 
The input parameters can be correlated to composite or 
derived outcomes (i.e., an outcome that is not directly an 
output of the model but one that is derived from the out- 
put data). Likewise, input variables can be combined (for 
example, the volume of a room can be determined from 
the dimension). Room volume may be correlated with 
key outcome criteria, for example, peak temperature or 
time to peak temperature. 

Importance analysis can be used to simplify a future 
uncertainty analysis by determining the input uncertain- 
ties that are most crucial. This can simplify the process for 
a class of buildings and can demonstrate where addi- 
tional research would be effective in reducing uncertainty 
and ensuring a safer, more predictable building. It must 
be remembered, however, that correlation does not equal 
causation. Thus, any apparent, strong correlation that is 
counterintuitive should be investigated with good engi- 
neering judgment. Also, for each design, the value of the 
correlation coefficient that is statistically significant will 
depend on the number of scenarios run and the sampling 
method used. 

Step 8: Judging a Design’s Acceptability Based 
on All Four Elements of Probabilistic Statement 
of Performance 

There are two ways to judge acceptability of a design. 
The first is based on the minimum time to untenability 
anywhere in the building, including the room of origin. 
The second is the time to untenability along the egress 
path. In general, for both cases, cumulative distribution 
functions are used to judge acceptability of a design. For 
example, Figure 5-43 is a cumulative distribution function 

of the time to a specific value of criterion A in the room of 
origin. If the probabilistic statement of performance re- 
quired a 0.9 probability of having 30 s or more before 
reaching this value, it can be determined from the CDF 
that this criterion is met. In fact, Figure 5-4.3 shows that 
there is a 0.9 probability of having 80 s or more. However, 
if the probabilistic statement of performance requires a 1.0 
probability of having 50 s or more, Figure 5-4.3 shows that 
this criterion is not met because the CDF demonstrates a 
1.0 probability of having only 30 s or more. 

Another way of judging the acceptability of a 
performance-based design is with a time-to-egress anal- 
ysis. The time needed to egress a building is often repre- 
sented in the literature as the time to detect the fire, plus 
the time to react, plus the time to travel to a safe place. 
This is represented mathematically as 

One problem with this approach is that it is very difficult 
to predict human behavior in terms of reaction time and 
travel time during a fire. There is both variability due to 
age and health of the individual and uncertainty as to in- 
dividual goals and concerns (e.g., will the person try to 
fight the fire, locate valuables, rescue pets, or notify other 
occupants about the fire?). The methodology described in 
this chapter may be applied to egress calculations; how- 
ever, since these are difficult to predict, it is suggested that 
perhaps these are best handled as societal and policy de- 
cisions. Regulatory decisions may be made as to the avail- 
able, safe egress time. For example, more time may be 
mandated for a healthcare facility, where patients may 
be nonambulatory and/or asleep at the time of the fire, 
than in an office building where occupants are generally 
awake and healthy. 
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Steps 9-10 Select Final Design 
and Prepare Documentation 

Candidate designs that satisfy the probabilistic de- 
sign statement(s) may be considered for selection as the 
final design. When more than one candidate design meets 
all four elements of the probabilistic statement of perfor- 
mance, other factors such as cost and preference are con- 
sidered. When considering multiple designs or designs 
with very different features, a multicriteria decision anal- 
ysis model may be developed to aid in selecting the final 
design. 

Proper documentation of a performance design is 
critical and should be written so that all parties involved 
understand what is necessary for the design implementa- 
tion, maintenance, and continuity of the fire protection 
design. The SFPE Engineering Guide to Performance-Based 
Fire Protection Analysis and Design of Buildings suggests 
that the documentation have four parts: the fire protec- 
tion engineering design brief, the performance design re- 
port, the detailed specifications and drawings, and the 
building operations and maintenance manual.11 It is im- 
portant that the performance-based design report convey 
the expected hazards, risks, and performance over the en- 
tire building life. It should include the project scope, goal, 
and objectives, the probabilistic design statements, a dis- 
cussion of the design fires and design fire scenarios, and 
any critical design assumptions. 

Treatment of Uncertainty 
In conclusion, incorporating uncertainty in a fire 

safety engineering design calculation aids in ensuring per- 
formance. The methodology described in the above section 
can be used in combination with standard performance- 
based design procedure. Each step in the methodology 
may be expanded or contracted to fit the needs of a given 
calculation. In the future, one may be able to construct li- 
braries of models with families of input scenario genera- 
tors and develop reusable models for classes of buildings. 
Ultimately, a fire safety engineering model should be de- 
veloped that directly incorporates uncertainty. 

Application of Uncertainty 
to Cost-Benefit Models and Decision 

Analysis Models 

Decision Making under Uncertainty 
The importance of making good decisions under con- 

ditions of uncertainty is becoming better understood in 
many fields, including fire safety design. The recently re- 
leased National Science Policy study, "Unlocking Our Fu- 
ture: Toward a New National Science Policy," states that 
"decision makers must recognize that uncertainty is a 
fundamental aspect of the scientific process." Good deci- 
sions can be made under uncertain conditions; however, 
one must capture the nature and magnitude of the uncer- 
tainty in order to make a good decision.42 

There is uncertainty involved in deciding among fire 
safety options, such as whether to install smoke detectors, 
sprinklers, or both, Another example is deciding whether 
the cost of redundant pumps or entire redundant systems 
is justified. These types of decisions are typically modeled 
using fire safety trees.43 However, average or best-guess 
estimates typically are used for parameters in the decision 
model, and uncertainty and variability in these are rarely 
considered. 

Decisions made by municipalities on whether to man- 
date fire safety systems, such as residential sprinklers, are 
likewise often made based on economic analyses using 
best-guess and national average values. Integration of un- 
certainty and variability into these types of cost-benefit 
studies would provide the decision maker more insights 
into the issues at hand. It would also highlight where en- 
gineering technology is able to reduce risks and where 
regulatory solutions might be more helpful. 

This is becoming more complex because implementa- 
tion of any form of a performance-based standard will re- 
quire more decisions to be made. These decisions will be 
more difficult, more complex, and more uncertain than 
under a prescriptive-based code. Robert Clemen dis- 
cusses in his book, Making Hard Decisions, four reasons 
why making decisions is so difficult.@ 

First, decisions cnn be di'iciilt simply because of their com- 
plexity In the case of decisions regarding fire protec- 
tion features, one must consider the potential for 
property protection, life safety, injury mitigation, and 
business continuity. One must also consider the diverse 
impacts on people with special needs, such as the very 
young, the elderly, or persons with limited mobility. 
Secorid, decisioiis can be dflicult because the decision ninker 
may be zoorking tozoard intiltiple or competing objectives. 
In fire protection analyses, typically competing objec- 
tives are low cost and high level of safety. Progress in 
one direction, such as installing automatic fire sprin- 
klers for increased fire safety, may impede progress of 
a competing objective, such as designing an economi- 
cal building. 
Third, a yrobleni rimy bc difficiilt if dflercnt peuspectioes 
lead to diferent conclusions. h a  fire protection decision, 
the perspective of the building owner, designer, and 
authority having jurisdiction may very well differ. 
Finally, decisions can also be d#icult because of the inherent 
uncertain@/. Uncertainties may arise in the model 
physics, the values of the inputs, the reliability of the 
devices, and the frequency of events. Yet a decision 
must be made without knowing for sure what these 
uncertain values will be. In fact, the most important 
decisions are often those that must be made under the 
greatest uncertainty, have the highest complexity, and 
involve multiple perspectives and goods. 

The quantitative treatment of variability and uncertainty 
using the tools and techniques presen led earlier in this 
chapter can help in identifying important sources of un- 
certainty and representing that uncertainty in a quantita- 
tive way. 

The following section introduces an analytical ap- 
proach that allows quantitative models and decisions 
models to be built with the integrated treatment of uncer- 
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tainty. The final section demonstrates how these tools were 
used in a cost-benefit model of the decision to mandate 
residential fire sprinklers from a municipal standpoint. 

Available Software That Incorporates Uncertainty 

Decision analysis applications often use generic mod- 
eling software such as spreadsheets, statistics packages, 
and financial modeling languages. Specialized software 
is also available for modeling decision problems using 
decision trees, influence diagrams, belief networks, multi- 
attribute utility functions, hierarchical value structures, 
Monte Carlo simulation, and multicriteria optimization. 

Two such pieces of software that allow for direct 
treatment of uncertainty are Analytica'" by Lumina and 
@RisFh' by Palisade. These are just two software options. 
They are described here for informational purposes only, 
intended to provide the reader with an idea of the capa- 
bilities of currently available software. The reader is en- 
couraged to evaluate the full range of available software 
before selecting a package. 

@RISK is a risk analysis and simulation add-in for 
Microsoft Excel or Lotus 1-2-3. @RISK adds the power of 
Monte Carlo simulation to your spreadsheet models. It al- 
lows the user to replace uncertain values in their spread- 
sheet with probability functions, which represent a range 
of possible values. @RISK will recalculate your spread- 
sheet hundreds or even thousands of times, each time se- 
lecting random numbers from the functions entered. The 
result is distributions of possible outcomes and the prob- 
abilities of getting those results. This identifies not only 
what could happen in a given situation, but how likely it 
is that it will happen. 

Analytica is another program that allows for the di- 
rect treatment of uncertainty. A model built in Analytica 
uses a graphical interface that resembles an influence dia- 
gram. This diagram conveys the model structure. A com- 
plicated model can be easily organized into a hierarchy of 
comprehensible and simple modules. The influence dia- 
gram format easily distinguishes between decision vari- 
ables (those you can control), chance variables (uncertain 
quantities that cannot be controlled), and objectives (crite- 
ria to maximize). 

Other distinctive features of Analytica are what the 
company terms intelligent arrays and also turn-key im- 
portance analysis. With intelligent arrays, data may be 
entered as an array indexed by several parameters. 
The software handles operations on these multidimen- 
sional values, such as adding, multiplying element by 
element, or summing over a dimension. Examples of 
intelligent arrays are presented in the following section. 

In Analytica uncertainty can be treated explicitly with 
probabilities. The user can express uncertainty about any 
variable, selecting a probability distribution using a 
graphical browser; propagate uncertainties with the 
model using Monte Carlo sampling; and display uncertain 
results as standard statistics, probability bands, probabil- 
ity density functions, or cumulative probability functions. 
Analytica conducts rank-order and importance analyses. 
These tools help one decide which uncertainties make a 
difference to help determine whether getting better data 
or expanding the model is worthwhile. Analytica also al- 

lows for parametric analysis by graphing model behavior 
as one or more inputs are varied. 

Example of Cost-Benefit Model with Variability 
and Uncertainty 

In the United States, approximately 3500 people die 
each year in residential fires. The number of residential 
fire deaths, however, varies with the type of housing, area 
of the country, and community size. The cost of installing 
residential fire sprinklers varies with areas of the country 
and house age. Thus, the true cost-benefit will be different 
for each combination of the above parameters. However, 
cost-benefit models typically use average costs and prob- 
abilities and do not incorporate uncertainty. 

A model was built using Analytica that incorporated 
variability and uncertainty to determine the societal ben- 
efits and costs of mandating residential sprinklers. A full 
description of the mathematical model and the results is 
beyond the scope of this chapter but can be found in "A 
Municipal Model of the Cost of Mandating Residential 
Sprinklers."45 A brief overview of that study is presented 
in order to demonstrate the techniques used in the treat- 
ment of variability and uncertainty and the implications 
for fire protection analyses. 

Treatment of Variability and Uncertainty 

Interyear variability in fire loss statistics: To conduct a 
cost-benefit study of residential fire sprinkler systems, 
many fire statistics (e.g., death rates, injury rates, and av- 
erage direct dollar losses) are needed as inputs. National 
average values of these numbers are often used in these 
analyses. For example, the national average value for the 
residential death rate would be equal to the number of 
residential fire deaths nationally divided by the number 
of occupied residential units. The actual fire death rate 
will vary with a number of parameters. 

The U.S. National Fire Protection Association pub- 
lishes death rates discretized by three of four index vari- 
ables: region of the country, community size, and house 
type.46 The fourth index variable, house age, is accounted 
for in the cost functions as it is more expensive to retrofit 
sprinklers than it is to install them during the construc- 
tion phase. There are four regions of the country, eight 
community sizes, and three house types. Thus, the death 
rate used in these calculations is a 4 X 8 X 3 matrix con- 
sisting of 96 values for death rate. Two examples would 
be the death rate in mobile homes in a small community 
(2500 or less) in the South and the death rate in a one- or 
two-family dwelling in a community size of 25,000 to 
50,000 in the West. 

Yearly variability in fire loss statistics: It is important 
to differentiate between variability and uncertainty. Vari- 
ability in fire statistics from year to year arises because of 
the randomness of the occurrence of fires. For instance, in 
one particular year, several large-loss fires may occur fol- 
lowed by few or none the next year. In this study, since 
there is an interest in benefits and costs over the life of a 
fire sprinkler system, mean yearly values were chosen. 
Yearly variance in deaths, injuries, property loss, and 
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indirect losses due to fires is thus accounted for by taking 
mean yearly values over a five-year period. Mean values 
were calculated from the 1989-1993 data. 

Uncertainty in the fire statistics: Uncertainty in fire 
loss statistics exists due to the impossibility of a full and 
accurate accounting of all fires and all fire losses. Mathe- 
matical techniques are thus used to provide estimates.4' 
Uncertainty in the fire data is represented as uncertainty 
about the mean values. An expert elicitation of the chief 
statistician of NFPA was conducted to set the uncertainty 
bands for the fire statistics.48 

Uncertainty in other (empirical) model inputs: Uncer- 
tainty in the cost data and parameters such as the sprin- 
kler reduction factor were determined by bounding. For 
example, uncertainty in the sprinkler reduction factor 
arises because of the small number of fires occurring in 
homes with automatic sprinklers installed. Data from 
other occupancies were used to bound the uncertainty. 

Propagation of uncertainty: Once the uncertainties in 
the model inputs have been expressed, the question 
becomes, How can we propagate these uncertainties 
through the model to discover the uncertainty in the pre- 
dicted consequences? In this analysis a Monte Carlo sim- 
ulation was used. A value for each input is randomly 
selected from its actual probability distribution. From 
these values, a value for the outcome criteria is calculated. 
This process is repeated many times, resulting in a proba- 
bility distribution for each outcome variable. 

Valuekost of death averted For any cost-benefit analy- 
sis regarding health and safety, one of the most highly 
contentious points is setting a value of life. Economists 
have come up with various ways of estimating the value 
of a life. These include willingness to pay for safety de- 
vices, and income-based estimates."g All these methods 

are highly debated. For this study, the problem of estab- 
lishing a value of life was avoided by means of careful se- 
lection of the outcome criteria. By selecting the outcome 
criteria to be dollars per premature death averted and 
dollars per life-year saved, no explicit value of life needs 
to be specified. 

Results-national average calculation versus indexed 
calculations: When variability due to region, commu- 
nity size, house type, and house age are accounted for, the 
net cost of residential sprinklers varies tremendously. The 
net cost for installing residential sprinklers varies by 
greater than a factor of 35 times. From a low of $1.4 mil- 
lion per premature death averted (for a new mobile home 
in a small community in the South) to a high of $35.1 mil- 
lion (for a retrofit of a one- and two-family dwelling in a 
medium-size community in the West). Based on a na- 
tional average calculation, our model predicts that resi- 
dential fire sprinklers have a median net cost of $7.3 
million dollars per premature death averted. 

Comparison to other lifesaving interventions: An arti- 
cle in Risk AnaZysis identified over 500 lifesaving interven- 
tions, reporting their net cost in terms of dollars per 
life-year saved.50 The accuracy of the results is limited by 
the accuracy of the data and assumptions in each original 
analysis, but the results are believable within an order of 
magnitude. In this study the cost per life-year saved for 
residential fire sprinklers was compared to the cost per 
life-year saved for chlorination of drinking water, ban- 
ning urea-formaldehyde insulation in homes, installing 
oxygen depletion sensors for gas space heaters, conduct- 
ing radon remediation, mandating child-resistant ciga- 
rette lighters, and installing ground fault interrupters. 
Figure 5-4.7 below shows this comparison. The heights of 
the bars represent the relative costs per life-year saved 
and have all been normalized to the cost of chlorination of 
drinking water. 

Sprinkler Sprinkler Sprinkler Drinking- Home Gas Radon Cigarette GFC 
(manufactured (multi- (single water insulation heaters prevention lighters interrupt 

home) family) family) chlorine 

Lifesaving intervention 

Figure 5-4.7. 
residential lifesaving interventions. 

Comparison of net cost of fire sprinklers in manufactured homes with other 
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Uncertainty in Cost-Benefit and Decision Analysis 
Models 

This example demonstrates how uncertainty and 
variability may be treated in a cost-benefit or decision 
analysis model. It also showed that effectively treating 
variability and uncertainty, and use of tools such as im- 
portance analysis and comparative analysis, can lead to 
greater insights. The cost of mandating residential fire 
sprinklers in new mobile homes was shown to be as low 
as five times less than the cost of mandating residential 
fire sprinklers using national average values for fire risk 
and costs. The cost of mandating residential fire sprin- 
klers in existing single family homes was shown to be up 
to five times more than using national average numbers. 
The comparative analysis provides lawmakers a frame of 
reference by comparing the cost of mandating residential 
fire sprinklers to the costs of mandating other residential 
safety options with lifesaving potential. 

Conclusion 
The treatment of uncertainty is key to ensuring and 

maintaining an appropriate level of public safety while 
allowing the flexibility necessary to reduce costs. Tkus is 
true for all fire safety engineering calculations, whether 
conducted to meet a performance-based code, to aid in 
the establishment of a prescriptive requirement, or to 
compare a performance option to its prescriptive counter- 
part. Beyond being just another step in the process of get- 
ting a building approved, properly determining and 
documenting a level of confidence in the design will have 
numerous benefits. It will facilitate cooperation among 
stakeholders by increasing the overall understanding of 
risks and costs. 

Distributions of outcomes are a much richer descrip- 
tion of what is possible than the typical point value 
answers. Though stakeholders and/or policy decisions 
must still determine how much risk to accept, with thor- 
ough uncertainty analyses, this decision will be informed 
and free of the uneasiness that typically surrounds accep- 
tance of a deterministic performance calculation. The in- 
formation provided in this chapter is intended to help the 
fire protection community to understand the nature and 
sources of uncertainty, to aid in the selection of a calcula- 
tion procedure, to apply a methodology for the treatment 
of uncertainty, and to incorporate uncertainty into cost- 
benefit models and decisions. 
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